Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 59(17): 5335-5342, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543559

RESUMO

We present optical characterization, calibration, and performance tests of the Mesospheric Airglow/Aerosol Tomography Spectroscopy (MATS) satellite, which for the first time, to the best of our knowledge, for a satellite, applies a linear-astigmatism-free confocal off-axis reflective optical design. Mechanical tolerances of the telescope were investigated using Monte Carlo methods and single-element perturbations. The sensitivity analysis results indicate that tilt errors of the tertiary mirror and a surface RMS error of the secondary mirror mainly degrade optical performance. From the Monte Carlo simulation, the tolerance limits were calculated to ±0.5mm, ±1mm, and ±0.15∘ for decenter, despace, and tilt, respectively. We performed characterization measurements and optical tests with the flight model of the satellite. Multi-channel relative pointing, total optical system throughput, and distortion of each channel were characterized for end-users. Optical performance was evaluated by measuring the modulation transfer function (MTF) and point spread function (PSF). The final MTF performance was 0.25 MTF at 20 lp/mm for the ultraviolet channel (304.5 nm), and 0.25-0.54 MTF at 10 lp/mm for infrared channels. The salient fact of the PSF measurement of this system is that there is no noticeable linear astigmatism detected over a wide field of view (5.67∘×0.91∘). All things considered, the design method showed great advantages in wide field of view observations with satellite-level optical performance.

2.
Appl Opt ; 58(6): 1393-1399, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30874023

RESUMO

We present the development of a compact f/7.3 (D=35 mm) three-mirror reflective telescope for the atmospheric-research microsatellite Mesospheric Airglow/Aerosol Tomography Spectroscopy (MATS). The telescope design was driven by the end users' need for a reflective wide-field (5.67°×0.91°) optic with high stray light rejection and six detection channels with separate image sensors, operating at wavelengths 270-772 nm. For the first time, a design method for wide-field off-axis telescopes-in which linear astigmatism is eliminated-was applied and tested in practice. Single-point diamond turning was used to produce two sets of 37-110 mm large free-form aluminum mirrors with surface figure errors and roughness values of 34-62 nm (RMS)/193-497 nm (PV) and 2.8-3.5 nm (RMS), respectively. A method that combines precise machining and geometry measurements (using a coordinate measuring machine) was employed to fabricate an aluminum structure to accurately position the mirrors without the need for manual alignment. The telescope was tested with a network of plate beamsplitters and filters, which define the spectral selection for the six detection channels. Imaging performance measurements were carried out using a reflective off-axis collimator, which projects imaging targets at infinite focus. A modulation transfer function (MTF) value of 0.45 at 20 lp/mm was measured at ∼760 nm (diffraction limit: 0.85) using a slanted edge target. By modeling the measured mirror surfaces in optical design software, a reoptimization of the mirror positions could be performed and an improved MTF of ∼0.75 at 20 lp/mm was predicted. The results demonstrate design- and building methods that can be utilized to make off-axis telescopes for a vast range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...